Helicobacter pylori Type IV Secretion Apparatus Exploits β1 Integrin in a Novel RGD-Independent Manner
نویسندگان
چکیده
Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (T4SS) into host cells is a major risk factor for severe gastric diseases, including gastric cancer. However, the mechanism of translocation and the requirements from the host cell for that event are not well understood. The T4SS consists of inner- and outer membrane-spanning Cag protein complexes and a surface-located pilus. Previously an arginine-glycine-aspartate (RGD)-dependent typical integrin/ligand type interaction of CagL with alpha5beta1 integrin was reported to be essential for CagA translocation. Here we report a specific binding of the T4SS-pilus-associated components CagY and the effector protein CagA to the host cell beta1 Integrin receptor. Surface plasmon resonance measurements revealed that CagA binding to alpha5beta1 integrin is rather strong (dissociation constant, K(D) of 0.15 nM), in comparison to the reported RGD-dependent integrin/fibronectin interaction (K(D) of 15 nM). For CagA translocation the extracellular part of the beta1 integrin subunit is necessary, but not its cytoplasmic domain, nor downstream signalling via integrin-linked kinase. A set of beta1 integrin-specific monoclonal antibodies directed against various defined beta1 integrin epitopes, such as the PSI, the I-like, the EGF or the beta-tail domain, were unable to interfere with CagA translocation. However, a specific antibody (9EG7), which stabilises the open active conformation of beta1 integrin heterodimers, efficiently blocked CagA translocation. Our data support a novel model in which the cag-T4SS exploits the beta1 integrin receptor by an RGD-independent interaction that involves a conformational switch from the open (extended) to the closed (bent) conformation, to initiate effector protein translocation.
منابع مشابه
Systematic site-directed mutagenesis of the Helicobacter pylori CagL protein of the Cag type IV secretion system identifies novel functional domains
The Cag Type IV secretion system, which contributes to inflammation and cancerogenesis during chronic infection, is one of the major virulence factors of the bacterial gastric pathogen Helicobacter pylori. We have generated and characterized a series of non-marked site-directed chromosomal mutants in H. pylori to define domains of unknown function of the essential tip protein CagL of the Cag se...
متن کاملPreservation of Helicobacter pylori CagA Translocation and Host Cell Proinflammatory Responses in the Face of CagL Hypervariability at Amino Acid Residues 58/59
Carriage of the CagA oncoprotein by the human gastric cancer-associated pathogen Helicobacter pylori is significantly associated with this typically benign chronic infection advancing to a potentially fatal outcome. However it remains to be elucidated why only a small subset of individuals infected with H. pylori CagA-positive strains develops gastric cancer. H. pylori translocates CagA into ho...
متن کاملA novel basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori
Intercellular junctions are crucial structural elements for the formation and maintenance of epithelial barrier functions to control homeostasis or protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of numerous cancers as well as multiple infectious diseases. Many bacterial pathogens harbor type IV secretion syst...
متن کاملAn RGD Helper Sequence in CagL of Helicobacter pylori Assists in Interactions with Integrins and Injection of CagA
Helicobacter pylori is a specific gastric pathogen that colonizes the stomach in more than 50% of the world's human population. Infection with this bacterium can induce several types of gastric pathology, ranging from chronic gastritis to peptic ulcers and even adenocarcinoma. Virulent H. pylori isolates encode components of a type IV secretion system (T4SS), which form a pilus for the injectio...
متن کاملCagI Is an Essential Component of the Helicobacter pylori Cag Type IV Secretion System and Forms a Complex with CagL
Helicobacter pylori, the causative agent of type B gastritis, peptic ulcers, gastric adenocarcinoma and MALT lymphoma, uses the Cag type IV secretion system to induce a strong proinflammatory response in the gastric mucosa and to inject its effector protein CagA into gastric cells. CagA translocation results in altered host cell gene expression profiles and cytoskeletal rearrangements, and it i...
متن کامل